Hermitian harmonic maps and non-degenerate curvatures
نویسندگان
چکیده
منابع مشابه
Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds
In this paper we study a nonlinear elliptic system of equations imposed on a map from a complete Hermitian (non-Kähler) manifold to a Riemannian manifold. This system is more appropriate to Hermitian geometry than the harmonic map system since it is compatible with the holomorphic structure of the domain manifold in the sense that holomorphic maps are Hermitian harmonic maps. It was first studi...
متن کاملHarmonic Maps and Biharmonic Maps
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
متن کاملHermitian Manifolds of Pointwise Constant Antiholomorphic Sectional Curvatures
In dimension greater than four, we prove that if a Hermitian non-Kaehler manifold is of pointwise constant antiholomorphic sectional curvatures, then it is of constant sectional curvatures.
متن کاملHarmonic Morphisms, Hermitian Structures and Symmetric Spaces
[A] M. Svensson, On holomorphic harmonic morphisms, Manuscripta Math. 107 (2002), 1–13. [B] M. Svensson, Harmonic morphisms from even-dimensional hyperbolic spaces, Math. Scand. 92 (2003), 246–260. [C] M. Svensson, Holomorphic foliations, harmonic morphisms and the Walczak formula, J. London Math. Soc. 68 (2003), 781–794. [D] M. Svensson, Harmonic morphisms in Hermitian geometry, J. Reine Angew...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2014
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2014.v21.n4.a12